Structural Chemistry of Human RNA Methyltransferases.
نویسنده
چکیده
RNA methyltransferases (RNMTs) play important roles in RNA stability, splicing, and epigenetic mechanisms. They constitute a promising target class that is underexplored by the medicinal chemistry community. Information of relevance to drug design can be extracted from the rich structural coverage of human RNMTs. In this work, the structural chemistry of this protein family is analyzed in depth. Unlike most methyltransferases, RNMTs generally feature a substrate-binding site that is largely open on the cofactor-binding pocket, favoring the design of bisubstrate inhibitors. Substrate purine or pyrimidines are often sandwiched between hydrophobic walls that can accommodate planar ring systems. When the substrate base is laying on a shallow surface, a 5' flanking base is sometimes anchored in a druggable cavity. The cofactor-binding site is structurally more diverse than in protein methyltransferases and more druggable in SPOUT than in Rossman-fold enzymes. Finally, conformational plasticity observed both at the substrate and cofactor binding sites may be a challenge for structure-based drug design. The landscape drawn here may inform ongoing efforts toward the discovery of the first human RNMT inhibitors.
منابع مشابه
Structural Chemistry of Human SET Domain Protein Methyltransferases
There are about fifty SET domain protein methyltransferases (PMTs) in the human genome, that transfer a methyl group from S-adenosyl-L-methionine (SAM) to substrate lysines on histone tails or other peptides. A number of structures in complex with cofactor, substrate, or inhibitors revealed the mechanisms of substrate recognition, methylation state specificity, and chemical inhibition. Based on...
متن کاملCharacterization of human, Schizosaccharomyces pombe, and Candida albicans mRNA cap methyltransferases and complete replacement of the yeast capping apparatus by mammalian enzymes.
Human and fission yeast cDNAs encoding mRNA (guanine-N7) methyltransferase were identified based on similarity of the human (Hcm1p; 476 amino acids) and Schizosaccharomyces pombe (Pcm1p; 389 amino acids) polypeptides to the cap methyltransferase of Saccharomyces cerevisiae (Abd1p). Expression of PCM1 or HCM1 in S. cerevisiae complemented the lethal phenotype resulting from deletion of the ABD1 ...
متن کاملStructural insights into the function of aminoglycoside-resistance A1408 16S rRNA methyltransferases from antibiotic-producing and human pathogenic bacteria
X-ray crystal structures were determined of the broad-spectrum aminoglycoside-resistance A1408 16S rRNA methyltransferases KamB and NpmA, from the aminoglycoside-producer Streptoalloteichus tenebrarius and human pathogenic Escherichia coli, respectively. Consistent with their common function, both are Class I methyltransferases with additional highly conserved structural motifs that embellish t...
متن کاملGenomic Survey, Gene Expression Analysis and Structural Modeling Suggest Diverse Roles of DNA Methyltransferases in Legumes
DNA methylation plays a crucial role in development through inheritable gene silencing. Plants possess three types of DNA methyltransferases (MTases), namely Methyltransferase (MET), Chromomethylase (CMT) and Domains Rearranged Methyltransferase (DRM), which maintain methylation at CG, CHG and CHH sites. DNA MTases have not been studied in legumes so far. Here, we report the identification and ...
متن کاملStructural biology and chemistry of protein arginine methyltransferases
Protein arginine methyltransferases (PRMTs), an emerging target class in drug discovery, can methylate histones and other substrates, and can be divided into three subgroups, based on the methylation pattern of the reaction product (monomethylation, symmetrical or asymmetrical dimethylation). Here, we review the growing body of structural information characterizing this protein family, includin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ACS chemical biology
دوره 11 3 شماره
صفحات -
تاریخ انتشار 2016